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solution, having jumps at . odt = n / 2 + nm (Fig. 1, curve y,.) For frequencies 
smaller than ,@d, the weak discontinuities of this solution disappear and the solution is 
described by formula (3.2) for J/b. 

Thus, the periodic solution of Eq. (1.7) with the boundary conditions (1.5) is unique 
for o > 0’; there are two solutions for oc > o > c# (one is discontinuous, the other 
is continuous); three solutions (one continuous, two discontinuous) are possible for 
w < w” 

The author expresses his thanks to A. G. Kulikovskii for valuable advice and for the 
discussion of the results. 
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The problem of the effect of an absolutely rigid stamp with a wedge planform 
on an elastic space is considered. There is assumed to be no friction in the do- 

main of contact between the stamp and the half-space. 
Galin first considered this problem in Cl]. The effect of the stamp on the half- 

space was accompanied, in that paper, by the effect of some loading outside it. 
A characteristic singularity of this solution is the fact that the contact pressures 

p (t, (p) have a r-l singularity at the wedge apex. 
Later, Rvachev attempted to solve the mentioned problem without the outside 

loading @I. He reduced it to an eigenvalue problem for a certain differential 
equation on a sphere and utilized the Galerkin method. The Rvachev solution 
has a ry-l singularity at the wedge apex, where 0 < y (CY) < 1, and 2a is the 
wedge angle. 

In this paper the problem of a wedge-shaped stamp with an arbitrary base is 
apparently successfully solved analytically for the first time by utilizing the 
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asymptotic “method of large a ” [S], and the singularity in the contact pressure 
at the wedge apex is isolated exactly for sufficiently small a . It hence turns 
out that in the general case the function p (r, cp) behaves as ?/z cos (0 In r) in 
the neighborhood of the point r = 0 , where 13 = 8 (a). The ~1 and rY-l sing- 
ularities also hold, but are contained in the following members of the asymptotic 

of the function p (r, (0) as r --+ 0. 
The question of the construction of an asymptotic solution of the problem under 

consideration for wedge angles near 2n is also posed herein. 

1. As is known [4]. the problem of the impression of a stamp with a wedge planform 
reduces to the solution of an integral equation of the form 

a co 

s s dzl, P (P. $1 PdP 
o v’pz + f2 - 2pr cos ((p - 9) = 2nAf @., @ 

--a 
i”;“,;g (1.1) 

Here 2a is the wedge angle, f (r, cp) is a function defined by the shape of the stamp 
base and the degree of its insertion into the half-space, p (p, 4) is the contact stress 
under the stamp, while G and v are the shear modulus and Poisson’s ratio of the half- 
space material. respectively. 

Let us note that the formulation of the problem of a plane wedgelike stamp, and pre- 
cisely this case has been examined in [l, 21, is not completely correct because for 

f (r, cp) G f = const only a solution with infinite energy can exist. Taking this into 
account, let us henceforth consider only the case when a Mellin [5] transformation in the 
variable r is applicable to the function f (r, cp) and 

G m 

(1.2) 
-a 0 

We shall require compliance with these same conditions from the solution p (r, cp) also. 

Now applying the Mellln transform in r to both sides of (1.1). we obtain [5] 

(1.3) 

ps (Q = ‘r3** ($), f, (Lx) = a-y** (‘9), E = $a-‘, 5 = ‘pa-‘, a = a-1 (1.4) 

pg* (q) = f p (p, $) ps+“z dp, P (P, 9) = i& \ us* (9) ~-‘-“l~ds (1.5) 
i- 

fs* (rp) = A i f(r, q)r*+ dr, Af (r, 'p) = &s fs* (0) r-*-“ads (1.6) 

0 r 

~+'tzdt 

K,(e) = -k[ F+2tcos(n _@B)+ f2 = n 

I ‘Res I < ‘/z 
2 cos 7ls 

0 
ps-1/2 (- cOse) (&(E - x)/k 

(1.7) 
Here I? is a line in the plane of the complex variable s = o f i'r, parallel to the 
imaginary axis and P, (x) is the Legendre function on the slit [6$ The following asym- 

ptotic expansion [S] holds for the kernel (1.7): 
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K,(8)= 2co;ns ++s, -&sJ9cos~~) (1.8) 

m I‘ (Ii_? + s + n) I‘ p/z - s + n) F (f + s, + - s, 1, cos2 +) I [‘F)” 2 
x 

n=o (nf)f 

X lhn - 2 In sin +) sin2 GJ , h, = 29 b + i)--+ (n + ‘!,-ts) - ‘II) (n + l/2 - s, 

We finally obtain for K, (0) 
‘II) (2) = r’ (2) I r (2) 

K, (0) = 1. In 10 1 + U. + jj (Ui + bi In 10 I) Pi 
i=l 

(1.9) 

where the expansion (1.9) converges uniformly for all 10 1 < II - F, E > 0. Some of 
the first Coefficients of the series (1.9) are 

a, = $7 (1) - 0.59 (0.5 + s) - 0,51$ (0.S -. s) + In 2 
a, = 0.125 (0.25 - s2)x 

x [2$ (2) - ‘II, (1.5 + s) - $ (1.5-s) + 2 In 21 -i_ 0.041 (6) 

a2 = 0.000347 (2) + 0.0078125 (0.25 - s2) (2.25 - s2) #: 
x [2$ (3) - Q (2.5 + s) - (l:iO) 

- ‘II, (2.5 - s) + 2 In 21 + 0.01041 (6) (0.25 - 9) [l-2~ (2) + q~ (1.5 4. s)+ 

+ ‘II) (1.5 - s) - 2 1n2], b, = -0.25 (0.25 -- s2) 

b, = 0.0208 (3) (025 - s2) - 0.015625 (0,25 - s2) (2.25 - ~2) 

The asymptotic solution of the integral equation (1.3) with kernel (1.9) can be obtain- 
ed for small a by the method of large a [3]. Furthermore, for definiteness let us limit 
ourselves to the case 

f (r, cp) = fri* e-+ (p>as- 1, s>o, x>O) (1.11) 

For p = 0 and K * such a stamp degenerates into a plane one. Utilizing the tables 
[S] we find 

f, (x:) = ~fa-lx-(s+Y~+Y) 1’ (S + I;2 + p), Ite s > - 0.5 - p (2.12) 

For the case j, (2) = 1’ (s) , the asymptotic solution of (1.3), (1.9) has been obtained 
with accuracy in [3] to terms of h-6 in “h and is determined by (12) - (14). Taking 
this into account we will have for the function /I~* ((0) 

ps* (‘u) = (a” - Q-“2 D-1 (s, IL) i ?L2” 5 [C,n!C (s) + d:,,r; (s) Ill 1. J ( ;, / x)2’, :- 
77l=O k==, 

-1 0 (h-6 1113 h), COO(S) --z A~x-(“+‘/J+~*)~‘(s i-l/,+/~), <E,,,(S)=_: 0 (1.13) 

D (s, a) a0 4 lrt2h j (6, - b,lr12~,)P ! (6, 1 6,,1ll”i. ~- 

- 0.25b,21n22k)iL--’ ) 0 (h-61~r%), 6, ~1~ ~ b,, 6, --o.25dl - !l.ir,u,b,- 

-0.56258; -i 2.2&z, ;- :!.62r,b.,, 6, O.T,a,b, i 0.75b,” - 2.2.7 bl 

The expressions for the remaining coefficients c,,~ (s) and dmIi( (s) are not needed 
later. 

An approximate solution of the problem can be obtained for small CL by means of 
(1.5) by using residue theory, however, only the zeroes of’the function D (s, ?L) are 
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known. The location of the line ,r is selected from the conditions of convergence of 

the first integral in (1.5) and absolute integ-rability of the function p (p, $) over tjle 
wedge domain. 

2. Let u be so small that terms of order hw2 
(1.14) with sufficient accuracy, 

and higher can be neglected in (1.13) 
Then in conformity with the second formula of (1.5). 

the solution of the problem can be represented as 

P@, V) = ~i~~~~lnn,._~~s~~~!;;_‘i;Ii;i~~~, _ ) 2 2 s (2.l) 

where C is the Euler constant. 
Let us study the zeroes of the function 

g_(s) = + (li, + s) + $ (‘1, - S) - 1c, x = 21n4h - 2 C (2.2) 

in the strip 1 Res 1 < Oi’, 
Theorem. For h > 1 the function 6 (s) has only four single zeroes in the strip 

1 Re s 1 < “/z (2.3) 

3.2 = f I’/, + y (a)], y(a) = 0 (x-l) > 0, s~,~ = * iEl (a), 8 (cc) = 0 (a-‘) 

For the proof, let us note that 

g (S/z - 0) = -- c*j g (‘/a & 0) = * =, g (0) < 0, g (i 00) = + 02 (2.4) 

Asymptotic formulas can be established for v (a) and 6 (CL) if the representation (6) 
([S], sec. 1.7) is used for the function J! (s). The uniqueness and simpleness of the zeroes 
sk (k = 1, 2, 3, 4) can be proved if the principle of the argument is utilized. It must 

just be taken into account that the function g (s) has two single poles at the points 

s=+‘/aintherectangle )aI<3/,--o, IzI <A<co. 

Let r be the straight line 

0 = l/Z - E,--m <‘t<oo, 0 < E<Illf (‘iiz, 1 + p). 

We then find by using residue theory that as r --+ 0 

PP, v) = $&J 7-w’A (p) - xri*A (p + 1) $- xY-E*ry-lB (P, T) - 

- x-~-‘ks12 [ co.3 (8 In rx) C (p, 8) - sin (0 111 rx) D* (p, O)] + xL+o (I)} 

A (P) = 
1 2r (CL - 7) 

-- , In 4h - C - l/0$ (- p) - ‘[A$ (1 + p) B(P, 7) = q,‘(* i 7) - w (- T) 

(2.5) 

We find analogously that as r + 00 

p (r, vu> = va_- { - r+-3++--y 2r (1 + r +- CL) 
[Q’ (1 + .f) - $1 (_ r)) + x-p-2o (r-7 I 

(24 

It follows from (2.5) that in the worst case as r + 0 

P (r, v) - 0 (rs-2) (2.7) 

Substituting (2.6), (2.7) into the first formula of (1.5). we see that the integral conver- 
ges if 
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‘I2 - 6 ( Res ( 112 -t y (2 3) 
We also see that the function p (r, cp) is absolutely summable over the wedge domain. 
The line r is located in such a way that all the constraints imposed on Res are sim- 

ultaneously satisfied. 
An investigation of the solution obtained shows that if 6 - 1 < p ( - lj2, then 

the principal singularity of the function p (r, cp) in the neighborhood of r = 0 is 

r-p-l, the oscillating singularities r-s!2 cos (0 In nc) and r-‘/z sin (8 In m) are secondary, 

and the singularity rp or F-1 is ternary. If -11/2 < p < Y, then the oscillating sing- 

ularities become the principal singularities. Consequently, the contact pressure p (r, cp) 

will change sign an infinite number of times as r + 0, as holds in contact problems 
with total adhesion. Therefore, an elastic medium can already not adjoin the stamp 

surface compactly in the neighborhood of the wedge apex. The singularity rl*-’ turns 

out to be secondary, and rY-1 or rP ternary. Finally, if y < ~1, then, as before, the 

oscillatory singularities will be the principal singularities, but the singularity t-y-1 be- 

comes secondary, and rpL-1 ternary. 
By using the Rouchet theorem it can be shown that the qualitative picture described 

does not change if all the components mentioned are retained in (1.13). 

3. It is interesting to construct the asymptotics of the solution of the problem for 
small fi = n - u. It is here necessary to turn attention to the fact that the kernel (1.7) 

of the integral equation (1.3) has period in. A similar kind of equation has been studied 
in p], where it was reduced to some infinite algebraic system, specified best for small 
p. An analysis of this system would permit construction of the principal term of the as- 

ymptotics of the solution in the form (11) [7]. 
We shall give here another method of reducing an integral equation of the type (1.3). 

(1.7) to an infinite algebraic system. 
Let the integral equation 

z-,4 

c q (9) K (CF - $1 d$ = 2.1! (cp) (I(PI <z--P) 
-&? 

whose kernel K (t) has the period 2n. We rewrite (3.1) in the form 

7. 

c 9* (cp) K (cp - $) d$ = 2N (CF) (I’FI<X-fiP) 

--: 
q* (+) I q ($) for 1 Q 1 G 71 - pq c/* ($) = O for z - p < / 0 I < n 

and expand the functions c/* ($), K (0) and f (q) in Fourier SePies 

(3.1) 

(3.2) 

Substituting the expansions (3.3) into (3.2) and integrating, we obtain 

(3.4) 

Taking account of the formula cn 

e ilrQ _ 
-2 

sin (Jln - fvf - fis) 
nn - pn - ?cs 

(3.5) 

sr-a 
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we obtain the following infinite algebraic system in the unknown coefficients qn : 

i Qnk, 
sin (nn - fin - rc.0 = f 

nn - 8n - ns s (s=...- 2, - i,o, i,2,. . .) (3.6) 
?l=-CO 

For sufficiently small 8 the system (3.6) can be written as 

q$,-+ i w k * (- iy = f, (s = . . . - i,o, 1, . . .) (3.7) 

n=- x) 

where the prime on the summation sign means that the member corresponding to n = s 

has been omitted. An approximate solution of (3.7) for small 8 can be obtained by 
successive approximations. 

It is also interesting to construct the asymptotics of the solution of the problem for 

small n = + (n / 2 - CL). In this case it should be noted that the solution of the integral 

equation (1.1) for a = n/2 (the stamp is a half-plane in planform) can be found in closed 
form. It is natural to take it as the zero approximation. 

Let us note that (1.5) (1.13). (2. l), (2.5) (2.6) also solve the problem of impression 
of a stamp outlined by the arcs of two circles intersecting at a small angle 2d , on an 
elastic half-space. It is only necessary to subject them to a Kelvin inversion transform- 
ation. 
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